14.03.12 On efficiently geo-referencing IPs with MaxMind GeolP and MySQL GIS « Jeremy Cole

Jeremy Cole

Geek, electronics nerd, database nerd, father of three.

« On Hiring a MySQL DBA/Architect
Proven Scaling goes global »

On efficiently geo-referencing IPs with MaxMind GeolP and MySQL GIS

Geo-referencing IPs is, in a nutshell, converting an IP address, perhaps from an incoming web visitor, a log file, a
data file, or some other place, into the name of some entity owning that IP address. There are a lot of reasons you
may want to geo-reference IP addresses to country, city, etc., such as in simple ad targeting systems, geographic
load balancing, web analytics, and many more applications.

This is a very common task, but | have never actually seen it done efficiently in MySQL in the wild. There is a lot of
questionable advice on forums, blogs, and other sites out there on this topic. After working with a Proven Scaling
customer, | recently did some thinking and some performance testing on this problem, so | thought | would publish
some hard data and advice for everyone.

Unfortunately, R-tree (spatial) indexes have not been added to InnoDB yet, so the tricks in this entry only work
efficiently with MyISAM tables (although they should work with InnoDB, they will perform poorly). This is actually OK
for the most part, as the geo-referencing functionality most people need doesn’t really need transactional support,
and since the data tables are basically read-only (monthly replacements are published), the likelyhood of corruption
in Myl[SAM due to any server failures isn’t very high.

The data provided by MaxMind

MaxMind is a great company that produces several geo-referencing databases. They release both a commercial
(for-pay, but affordable) product called GeolP, and a free version of the same databases, called Geolite. The most
popular of their databases that I've seen used is GeolLite Country. This allows you look up nearly any IP and find out
which country (hopefully) its user resides in. The free GeolLite versions are normally good enough, at about 98%
accurate, but the for-pay GeolP versions in theory are more accurate. In this article | will refer to both GeolP and
Geolite as “GeolP” for simplicity.

GeolP Country is available as a CSV file containing the following fields:

e ip from, ip to (text) — The start and end IP addresses as text in dotted-quad human readable format, e.g. “3.0.0.0”. This is a
handy way for a human to read an IP address, but a very inefficient way for a computer to store and handle IP addresses.

e ip from, ip to (integer) — The same start and end IP addresses as 32-bit integers1, e.g. 50331648.

e country code — The 2-letter ISO country code for the country to which this IP address has been assigned, or in some cases other
strings, such as “A2” meaning “Satellite Provider”.

e country name — The full country name of the same. This is redundant with the country code if you have a lookup table of country
codes (including MaxMind’s non-ISO codes), or if you make one from the GeolP data.

A simple way to search for an IP
Once the data has been loaded into MySQL (which will be explained in depth later), there will be a have a table with

a range (a lower and upper bound), and some metadata about that range. For example, one row from the GeolP
data (without the redundant columns) looks like:

Iip_from Hip_to ||country_code |

50331648 68257567 |us |

The natural thing that would come to mind (and in fact the solution offered by MaxMind themselvesz) iS BETWEEN. A

blog.jcole.us/2007/11/24/on-efficiently-geo-referencing-ips-with-maxmind-geoip-and-mysql-gis/ 1/20

14.03.12 On efficiently geo-referencing IPs with MaxMind GeolP and MySQL GIS « Jeremy Cole
simple query to search for the IP 4.2.2.1 would be:

SELECT country_ code
FROM ip country
WHERE INET ATON("4.2.2.1") BETWEEN ip from AND ip to

Unfortunately, while simple and natural, this construct is extremely inefficient, and can’t effectively use indexes
(although it can use them, it isn’t efficient). The reason for this is that it's an open-ended range, and it is impossible to
close the range by adding anything to the query. In fact | haven’'t been able to meaningfully improve on the
performance at all.

much better solution

While it probably isn’t the first thing that would come to mind, MySQL’s GIS support is actually perfect for this task.
Geo-referencing an IP address to a country boils down to “find which range or ranges this item belongs to”, and this
can be done quite efficiently using spatial R-tree indexes in MySQL’s GIS implementation.

The way this works is that each IP range of (ip_from, ip_to) is represented as a rectangular polygon from (ip_from,
-1) to (ip_to, +1) as illustrated here:

ip_from, -1 ip_to, -1

io_from, +1 ip_to, +1

In SQL/GIS terms, each IP range is represented by a 5-point rectangular rorycon like this one, representing the IP
range of 3.0.0.0 — 4.17.135.31:

POLYGON ((
50331648 -1,
68257567 -1,
68257567 1,
50331648 1,
50331648 -1

))

The search IP address can be represented as a point of (ip, 0), and that point with have a relationship with at least
one of the polygons (provided it's a valid IP and part of the GeolP database) as illustrated here:

15,0

1,-1 10.-1 11, -1 20,-1 211 251

1, +1 10.+1 11, +1 200 +1 21,+1 25+1

It is then possible to search these polygons for a specific point representing an IP address using the GIS spatial
relationship function mercontatns and pornt® to search for “which polygon contains this point” like this:

SELECT country_code

FROM ip country
WHERE MBRCONTAINS (ip_poly, POINTFROMWKB (POINT (INET ATON('4.2.2.1"), 0)))

blog.jcole.us/2007/11/24/on-efficiently-geo-referencing-ips-with-maxmind-geoip-and-mysql-gis/ 2/20

14.03.12 On efficiently geo-referencing IPs with MaxMind GeolP and MySQL GIS « Jeremy Cole

Pretty cool huh? | will show how to load the data and get started, then take look at how it performs in the real world,
and compare the raw numbers between the two methods.

Loading the data and preparing for work

First, a table must be created to hold the data. A rorvcon field will be used to store the IP range. Technically, at this
pointthe ip from and ip_to fields are unnecessary, but given the complexity of extracting the IPs from the porycon

field using MySQL functions, they will be kept anyway. This schema can be used to hold the data*:

CREATE TABLE ip country
(

id INT UNSIGNED NOT NULL auto_increment,
ip poly POLYGON NOT NULL,
ip_from INT UNSIGNED NOT NULL,
ip_to INT UNSIGNED NOT NULL,
country code CHAR(2) NOT NULL,

PRIMARY KEY (id),
SPATIAL INDEX (ip poly)
)7

After the table has been created, the GeolP data must be loaded into it from the CSV file, GeoIPCountryWhois.csv,
downloaded from MaxMind. The roap paTa command can be used to do this like so:

LOAD DATA LOCAL INFILE "GeoIPCountryWhois.csv"
INTO TABLE ip_country
FIELDS
TERMINATED BY ", "
ENCLOSED BY """
LINES
TERMINATED BY "n"
(
@ip_from_string, @ip_to_string,
@ip from, @ip to,
@country code, Qcountry string
)

SET

id := NULL,

ip_from := @ip_from,

ip_to 1= Q@ip_to,

ip poly := GEOMFROMWKB (POLYGON (LINESTRING (
/* clockwise, 4 points and back to 0 */
POINT (@ip from, -1), /* 0, top left */
POINT (@ip_ to, -1), /* 1, top right */
POINT (@ip to, 1), /* 2, bottom right */
POINT (Q@ip from, 1), /* 3, bottom left */
POINT (@ip_from, -1) /* 0, back to start */

)))

country code := Qcountry code

’

During the load process, the ip from string, ip _to string, and country string fields are thrown away, as they are

redundant. A few GIS functions are used to build the poLycon for ip poly from the ip from and ip to fields on-the-fly.

On my test machine it takes about 5 seconds to load the 96,641 rows in this month’s CSV file.

At this point the data is loaded, and everything is ready to go to use the above SQL query to search for IPs. Try a
few out to see if they seem to make sense!

Performance: The test setup

In order to really test things, a bigger load testing framework will be needed, as well as a few machines to generate
load. In my tests, the machine being tested, kamet, is a Dell PowerEdge 2950 with Dual Dual Core Xeon 5050 @
3.00Ghz, and 4GB RAM. We have four test clients, makalu{0-3}, which are Apple Mac Mini with 1.66Ghz Intel CPUs
and 512MB RAM. The machines are all connected with a Netgear JGS524NA 24-port GigE switch. For the purposes
of this test, the disk configuration is not important. On the software side, the server is running CentOS 4.5 with kernel
2.6.9-55.0.2.ELsmp. The Grinder 3.0b32 is used as a load generation tool with a custom Jython script and
Connector/J 5.1.5 to connect to MySQL 5.0.45.

There are a few interesting metrics that | tested for:

e The latency and queries per second with a single client repeatedly querying.
e Does the number of queries handled increase as the number of clients increases?

blog.jcole.us/2007/11/24/on-efficiently-geo-referencing-ips-with-maxmind-geoip-and-mysql-gis/

3/20

14.03.12 On efficiently geo-referencing IPs with MaxMind GeolP and MySQL GIS « Jeremy Cole

® |s latency and overall performance adversely affected by many clients?

The test consisted of an IP search using the two different methods, and varying the number of clients between 1 and

16 in the following configurations:

ICIients ||Machines ||Threads |
i I{ [|
2 I{ 12 |
[4 I{ 14 |
8 2 14 |
16 14 14 |

Each test finds the country code for a random dotted-quad format IP address passed in as a string.

ow does it perform? ow does it compare?

There are a few metrics for determining the performance of these searches. If you tried the BeTweEN version of this
query, you may have noticed that, in terms of human time, it doesn’t take very long anyway: | pretty consistently got 1

row in set (0.00 sec).Butdon'tletthatfool you.
It's clear that | wins hands down.
First, a look at raw performance in terms of queries per second.

Using BETWEEN, we max out at 264q/s with 16 clients:

Using BETWEEN

250

200

150

Queries/sec

100

50

1 2 4 B 146
Clients

Using MBrRCONTATNS, we max out at 17600q/s with 16 clients, and it appears that it's the test clients that are maxed out,

not the server:

Using MERCONTAINS

20000 -
18000
16000
14000
12000
10000
goo0
6000
4000
2000

Queries/sec

1 2 4 B 16
Clients

Next, a look at latency of the individual responses.

blog.jcole.us/2007/11/24/on-efficiently-geo-referencing-ips-with-maxmind-geoip-and-mysql-gis/

4/20

14.03.12 On efficiently geo-referencing IPs with MaxMind GeolP and MySQL GIS « Jeremy Cole

Using BETWEEN, we start out with a single client at 15.5ms per request, which is not very good, but still imperceptible
to a human. But with 16 clients, the latency has jumped to 60ms, which is longer than many web shops allocate to
completely construct a response. As the number of test clients increases, the latency gets much worse, because the
query is so dependent on CPU:

Using BETWEEN

70 -

60

50

40

30

Latency (ms)

2 4 B 16
Clients

Using MBRCONTAINS, we start out with a single client at 0.333ms per request, and even with 16 clients, we are well
under 1ms at 0.743ms:

Using MBRCONTAINS
0.8
0.7
0.6
g os
E 0.4
803
50
0.2
0.1
0 . . .
2 4 8 16
Clients
Conclusion

Definitely consider using MySQL GIS whenever you need to search for a point within a set of ranges. Performance is
fantastic, and it’s relatively easy to use. Even if you are an all-innoDB shop, as most of our customers are (and we
would recommend), it may very well be worth it to use MylSAM specifically for this purpose.

Update 1: Another way to do it, and a look at performance

Andy Skelton and Nikolay Bachiyski left a comment below suggesting another way this could be done:

SELECT country_code

FROM ip country

WHERE ip_to >= INET_ATON('%s')
ORDER BY ip to ASC

LIMIT 1

This version of the query doesn’t act exactly the same as the other two — if your search IP is not part of any range, it
will return the next highest range. You will have to check whether ip_from is <= your IP within your own code. It may
be possible to do this in MySQL directly, but | haven’t found a way that doesn’t kill the performance.

Andy’s version actually performs quite well — slightly faster and more scalable than vBrconTaAINS. | added two new
performance testing configurations to better show the differences between the two:

|Clients ||Machines ||Threads |‘

T 1T I 1

blog.jcole.us/2007/11/24/on-efficiently-geo-referencing-ips-with-maxmind-geoip-and-mysql-gis/ 5/20

14.03.12 On efficiently geo-referencing IPs with MaxMind GeolP and MySQL GIS « Jeremy Cole
[32 14 I8 |
64 @ 'e |

Here’s a performance comparison of merconTaINS VS. Andy’s Method:

Latency (ms) — Lower is better:

MBRCONTAINS vs. Andy's Method

1 2 4 B 16 32 64
Clients

MEBERCOMNTAINS — Andy's Method

Queries per second — Higher is better:

MERCONTAINS vs. Andy's Method
25000 -
20000 -"’ﬂﬂ.—___-—_-
15000 /
10000 /
S000 /
1 2 4 8 16 32 &4
Clients

Queries/seac

MERCONTAINS — Andy's Method

Once | get some more time to dig into this, | will look at why exactly BETweEN is so slow. I've also run into an
interesting possible bug in MySQL: If you add a 1M1t 1 to the BETWEEN version of the query, performance goes
completely to hell. Huh?

Thanks for the feedback, Andy and Nikolay.
ootnotes

! MySQL provides the 1NeT aTON() and INET NToa () functions for converting back and forth between dotted-quad
strings (cHar (15)) and 32-bit integers (1NT UNSIGNED). YOu can also use the equivalent functions, if they exist, if your
favorite programming language so that you can just feed an integer to MySQL. | haven't tested the (positive)
performance implications of doing that.

2 Although, strangely they offer a different solution specifically for MySQL using <= and >= operators instead of
BeTWEEN. | don’t find that that difference has any effect on MySQL. Maybe it was for a really old version of MySQL

that didn’t have BETWEEN?

3 Pet peeve: Why does MySQL require you to pass the output of its own POL.YGON, LINESTRING, POINT, etc., functions
through ceomrroMWKE in order to use them? It makes life suck that little bit more than necessary.

blog.jcole.us/2007/11/24/on-efficiently-geo-referencing-ips-with-maxmind-geoip-and-mysql-gis/ 6/20

14.03.12 On efficiently geo-referencing IPs with MaxMind GeolP and MySQL GIS « Jeremy Cole

4 Note that if you're looking to play around with the BETweEN version of things, you will want to add some indexes on
ip from and ip to.| would recommend INDEX (ip from, ip to) and INDEX (ip_ to, ip_ from) as those two seemed
to perform the best that | could find (given its poor efficiency to start with).

Share this: Gefallt mir < 1

This entry was posted on November 24, 2007 at 05:07 and is filed under GIS and Cartography, MySQL, MySQL Tips,
Technology. You can follow any responses to this entry through the RSS 2.0 feed. You can leave a response, or
trackback from your own site.

66 Responses to On efficiently geo-referencing IPs with MaxMind GeolP and
MySQL GIS

1. DbRunas - On efficiently geo-referencing IPs with MaxMind GeolP and MySQL GIS says:
November 24, 2007 at 09:32 | Reply

.] On efficiently geo-referencing IPs with MaxMind GeolP and MySQL GIS [...]

2. - Mark Robson Says:

November 24, 2007 at 10:54 | Reply

In fact another way of doing it is to use a conventional index on ip_from and then just do:

SELECT * FROM ipcountry WHERE ipfrom

3. Baromedia says:
November 24, 2007 at 11:30 | Reply

Hi Jeremy,

Thats a well research and written post that has tought me a lot about speed and efficiency regarding GeolP lookups in MySQL
and will inspire me to further create documented and researched material for educational purposes.
I have written an article about how to install the Maxmind GeolP Country database you can read at Maxmind GeolP setup tutorial

using phpMyAdmin.

Kind Regards

Bart

4.« Jeremy Cole says:

November 24, 2007 at 12:53 | Reply

Hi Mark,

I’'m not sure | follow. What do you mean? Do keep in mind we’re looking for an IP (x) within a range (m — n). Neither m nor n is
necessarily x itself.

Regards,

Jeremy

5. ﬁ Nikolay Bachiyski says:
November 24, 2007 at 15:26 | Reply

While trying to improve the BeTweEN query performance, a colleague of mine — Andy Skelton — devised a very simple and fast
query:

SELECT country_code

FROM ip_country

WHERE ip_to >= INET_ATON('4.2.2.1")
ORDER BY ip_to ASC LIMIT1

Of course this tricks works only if we have contiguous intervals, which cover all the IPs. Luckily most of the geoip databases
conform to this rule.

My simple tests showed that Andy’s query is slightly faster than yours, but you may feed it into your benchmarks, so that we can

blog.jcole.us/2007/11/24/on-efficiently-geo-referencing-ips-with-maxmind-geoip-and-mysql-gis/

7/20

14.03.12

On efficiently geo-referencing IPs with MaxMind GeolP and MySQL GIS « Jeremy Cole
see if there’s any substantial difference.

6. wAndv Skelton says:

November 24, 2007 at 15:39 | Reply

I don’t know the first thing about GIS but | have found an efficient solution and put it to use “in the wild”—on WordPress.com.

Possibly similar to the solution from Mark, whose comment | assume was cut off due to an unescaped HTML entity, we typically
get results from a 4,900,000-row MyISAM table in under 0.5ms using this query:

SELECT * FROM ip2location WHERE 123456789 <= ip to LIMIT 1

All we had to do was add an index on ip_to and verify that there are no overlapping ranges in our table. We can quickly compare
against ip_from in software so there is no need for a double-range query.

Until | discovered this simple query, our ip2location table was useless in production. Now we use it all the time. It doesn’t even
need its own server; it coexists on a server with dozens of other busy tables.

o
"] Jeremz Cole says:

November 24, 2007 at 18:19 | Reply

Hi Andy,
This is pretty interesting. I'll be updating the post shortly with your additions and the performance of that version of the query.
Regards,

Jeremy

Tom Allender Says:

November 25, 2007 at 04:311 Reply

Andy Skelton said:
SELECT * FROM ip2location WHERE 123456789

Do you not need an ORDER BY there? Or do you ALTER TABLE ip2location ORDER BY ip_to?

] ;1-
¢ L]
9. Mark Robson Says:

November 25, 2007 at 08:38 | Reply

My post originally said
SELECT * FROM ipcountry WHERE ipfrom <123456789 LIMIT 1
But yes, it seems to have been cut off.

My experiments suggested that this was very good. It wouldn’t work with overlapping ranges, but nor would any other algorithm.
It would be straightforward to check that there were no overlapping ranges.

You would have to check the row returned to make sure the IP was really within it (this check is simple and efficient). If the IP
wasn’t in the range of the returned row however, you could be sure it was nowhere else either (i.e. not found)

Mark

] ,“-
¢ 1]
10. Mark Robson Says:

November 25, 2007 at 08:50 | Reply

Further correction:
Should have said WHERE ipfrom <= 123456789 ORDER BY ipfrom DESC LIMIT 1

The “ORDER BY ipfrom DESC” is essential. You’'re finding the highest ipfrom which is less than or equal to the one you're
checking. This means you will find the range which the IP is in, if any, in a simple query using a conventional index.

Mark

. wAndv Skelton says:

November 25, 2007 at 11:28 | Reply

blog.jcole.us/2007/11/24/on-efficiently-geo-referencing-ips-with-maxmind-geoip-and-mysql-gis/ 8/20

14.03.12

12.

13.

14.

15.

16.

17.

18.

19.

On efficiently geo-referencing IPs with MaxMind GeolP and MySQL GIS « Jeremy Cole

The index on ip_to lets us get away without any ORDER BY because the index is naturally scanned in ascending order. That’s
also why | didn’t use ip_from.

o
= Jeremy Cole says:

November 25, 2007 at 11:34 | Reply

Hi Andy,

You could actually do the same trick with either ip_from or ip_to, as MySQL is capable of scanning in either direction. | wouldn’t
leave the ORDER BY out; as long as MySQL does what you expect (and it should) the ORDER BY is a no-op. If an optimizer
change is made at some point, the entire intent of your query can change without the ORDER BY, and that would be Bad(tm) —
you would start getting random rows back (but still 1) instead of the one you want.

At least for me, getting back the wrong row “sometimes” is bad enough, the possibility of the behaviour changing on upgrade and
completely breaking doesn’t make me comfortable at all. @

Regards,

Jeremy

HAndv Skelton says:

November 25, 2007 at 11:43 | Reply

Nikolay’s version with ORDER BY is what we use in production because we haven’t observed any difference in performance
when adding ORDER BY, nor accuracy, nor EXPLAIN SELECT. It is as you said. Better safe.

ﬁ Nikolay Bachiyski says:
November 25, 2007 at 14:34 | Reply

Jeremy,

| forgot to mention that the GeoLite Country database actually contains lots of gaps. In order to make sure the query gives the
correct result | wrote a simple perl script, which takes the csv file and fills in the gaps with dummy rows. Now if the entry doesn’t
exists you will get “-” instead of the next IP’s country.

links for 2007-11-27 : Bob Plankers, The Lone Sysadmin Says:
November 26, 2007 at 23:17 | Reply

[..]jcolea€™s weblog A» On efficiently geo-referencing IPs with MaxMind GeolP and MySQL GIS [...]

Geolocalisation : MySQL GIS A la rescousse says:
November 28, 2007 at 12:49 | Reply

[...] On efficiently geo-referencing IPs with MaxMind GeolP and MySQL GIS (O visite) [...]

Callum says:
November 30, 2007 at 10:05 | Reply

Forgive me if this is a stupid question, but how does = perform in comparison to BETWEEN?
SELECT country_ code

FROM ip_country

WHERE ip to >= INET ATON(4€™4.2.2.14€%) AND ip from

I'm not a MySQL expert by any means, but could the performance gain be the LIMIT 17 Perhaps after finding the first result,
MySQL can stop scanning the rest of the table. If that is the case, I'm guessing the >= AND

I&Joaquim Says:

November 30, 2007 at 10:19 | Reply

A;have you tried the binary file version that maxmind provides? It has a optimized format for this especific search, and libraries to
open it in varius languages (java, .net, ruby and more.)

= Jeremy Cole Says:
November 30, 2007 at 12:57 | Reply

Joaquim,

No, | haven’t done any performance testing on MaxMind’s solution yet. It would be interesting to do so.

blog.jcole.us/2007/11/24/on-efficiently-geo-referencing-ips-with-maxmind-geoip-and-mysql-gis/ 9/20

14.03.12

20.

21.

22.

23.

24.

25.

26.

27.

On efficiently geo-referencing IPs with MaxMind GeolP and MySQL GIS « Jeremy Cole
Regards,

Jeremy

links for 2007-12-01 « Donghai Ma says:
November 30, 2007 at 21:17 | Reply

[...] On efficiently geo-referencing IPs with MaxMind GeolP and MySQL GIS (tags: blog geography network gis geoip performance
database)][...]

hk Says:
November 30, 2007 at 22:27 | Reply

| had to insert a slash into your SQL to make it work:

LINES
TERMINATED BY “n”

Or it errored out with “Cannot get geometry object” etc. Worked fine after that change.

Thanks for the great article.

Sho Fukamachi Online » Blog Archive » Dead simple IP to Country in Rails Says:
December 1, 2007 at 00:55 | Reply

[...]these instructions to get MaxMind’s GeoLite IPCountry table into your [...]

o
= Jeremy Cole says:

December 1, 2007 at 01:54 | Reply

Hi hk,

Ack, you’re quite right. | guess WordPress escaped/changed it somewhere, as it was “n” in the edit box. Changing it to “\n”
corrected it in display. Thanks for the note! Nobody else caught that. @

Regards,

Jeremy

Web 2.0 Announcer Says:
December 1, 2007 at 03:20 | Reply

jcole?s weblog: Jeremy Cole?s take on life. Blog Archive On efficiently geo-referencing IPs with MaxMind GeolP and
MySQL GIS...

LT

‘ Nathan Schmidt says:
December 1, 2007 at 04:03 | Reply

Seconded on Joaquim’s hint about using the binary file version of MaxMind’s product — it’s quite compact and really the right way
to do things if you've got a very large number of queries to run — and this is important — at page view time, when latency as
opposed to aggregate throughput is a factor. When post-processing for stats you should of course use whatever is closest to your
input dataset. We use the binary file api in php at PBwiki for a number of things, and page content can vary based on nation of
origin. There are many use cases where an RDBMS shines and this isn’t really one of them.

QJoshua Paine says:

December 1, 2007 at 20:33 | Reply

This should do the in-range check in the query cheaply (but | haven’t tested at all):

select * from (SELECT * FROM ip2location WHERE 123456789 =ip_from;

o

| Jeremz Cole Says:
December 1, 2007 at 20:511 Reply

Joshua,

Did your post get truncated? | don’t think | get it.

blog.jcole.us/2007/11/24/on-efficiently-geo-referencing-ips-with-maxmind-geoip-and-mysql-gis/

10/20

14.03.12 On efficiently geo-referencing IPs with MaxMind GeolP and MySQL GIS « Jeremy Cole
Regards,

Jeremy

28. links for 2007-12-03 at but i forgot my pen Says:
December 3, 2007 at 15:21| Reply

[..]jcolea€™s weblog: Jeremy Colea€™s take on life. A» Blog Archive A» On efficiently geo-referencing IP... (tags: mysql geoip
database)][...]

29. Weird Wonderful Web Links for a cold December | False Positives Says:
December 4, 2007 at 18:37 | Reply

[...] On efficiently geo-referencing IPs with MaxMind GeolP and MySQL GIS —[...]

30. wFast MySQL Range Queries on MaxMind GeolP Tables « Andy Skelton says:
December 16, 2007 at 03:48 | Reply

[...JMySQL Range Queries on MaxMind GeolP Tables A few weeks ago | read Jeremy Cole’s post on querying MaxMind GeolP
tables but | didn’t know what all that geometric magic was about so | dropped a comment about how we [...]

31. Tim Says:
January 9, 2008 at 06:011 Reply

We are using IP2Location instead of Maxmind.
You can find similar SQL syntax from their FAQs.

http://www.ip2location.com/fags-ip-country.aspx

32. Jon Says:
January 10, 2008 at 12:54 | Reply

So | tried the original example out of curiosity but | found many issues with accuracy and such. So | looked at it and changed it
around a bit and this is what | came up with.

Import like this:

TRUNCATE ip_country;

LOAD DATA LOCAL INFILE “GeolPCity.csv”

INTO TABLE ip_country

FIELDS

TERMINATED BY “,”

ENCLOSED BY “*"

LINES

TERMINATED BY “n”

IGNORE 1LINES

(

@startlpNum,@endIpNum,@country,@region,
@city,@postalCode,@latitude,@longitude,
@dmaCode,@areaCode

)

SET

id :=NULL,

ip_from := INET_ATON(@startlpNum),

ip_to := INET_ATON(@endIpNum),

ip_poly := GEOMFROMWKB(POLYGON(LINESTRING(
/* clockwise, 4 points and back to O */
POINT(INET_ATON(@startlpNum), -1), /* O, top left */
POINT(INET_ATON(@endIpNum), -1), /* 1, top right */
POINT(INET_ATON(@endlpNum), 1), /* 2, bottom right */
POINT(INET_ATON(@startlpNum), 1), /* 3, bottom left */
POINT(INET_ATON(@startlpNum), -1) /* O, back to start */
),

country_code = @country,

city := @city,

zipcode := @postalCode,

lat := @latitude,

lon := @longitude,

=====

blog.jcole.us/2007/11/24/on-efficiently-geo-referencing-ips-with-maxmind-geoip-and-mysql-gis/ 11/20

14.03.12

33.

34.

35.

36.

On efficiently geo-referencing IPs with MaxMind GeolP and MySQL GIS « Jeremy Cole
areacode := @areaCode

Then use it like this:

SELECT city,country_code FROM ip_country WHERE MBRCONTAINS(ip_poly,
POINTFROMWKB(POINT(INET_ATON(12.199.160.34"), 0)));

Jon Says:
January 10, 2008 at 12:58 | Reply

| forgot to mention, that while this was rather fast assuming you already have a connection pool or something similar, when you
get to an installation like ours (1500+ servers) the time taken to create a MySQL connection, run the query and return the
recordset turned out to be longer than the time to use the binary file locally.

| had figured it would be close to on par if not faster. But because of the way Linux caches files on local file systems it’s faster to
use the binary file for us.

Stan van de Burgt says:
Eebruary 6, 2008 at 02:13 | Reply

Another *very* fast solution is to use a hash based on the class B network of the IP address your looking for.
First add a hash field ‘bucket’ and create a key for it:

ALTER TABLE ip_country ADD bucket smallint unsigned NOT NULL AFTER ip_to;
ALTER TABLE ip_country ADD KEY bucket(bucket);

Then fill the hash (this took 90 seconds on my development machine):
UPDATE ip_country SET bucket=ip_from >>16;

This sets the new field to the first 16 bits of the IP address of the ip_from field.
And from now on add the following to the WHERE clause of every query. Here $ip is the dotted notation of the IP address your
are looking for.

... AND bucket=INET_ATON($ip)>>16
Example:

SELECT * FROM ip_country
WHERE bucket=INET_ATON('72.14.207.99")>>16
AND INET_ATON('72.14.207.99’) BETWEEN ip_from AND ip_to;

Adding the extra condition brought down the time from 3-5 seconds to 0.0 @
Would be great if you could run the performance tests on this one too, so we can see some stats on this one.
- Stan

PS: The geo data (lat / long) in these databases is *really* bad.

Andrew Droffner Says:
February 6, 2008 at 15:40 | Reply

Converting IP Addresses to Integer Database Fields: Endian Match

There is a SQL/GIS POLYGON example, representing the IP range of [3.0.0.0; 4.17.135.31]. The unsigned integer versions are
50331648 & 68257567 respectively on an Intel architecture. This is confusing, since the “network” architecture is the opposite.

In order to store IP addresses in INTEGER database fields on Intel (x86), you *must* get the endianness right. See inet_aton(),
ntohl(), etc.

Andrew Droffner Says:
February 7, 2008 at 12:38 | Reply

Why does this use a POLYGON (rectangle) rather than a LINESTRING? An IP Address range is a line-segment.

I'd expect a 1D point on a line-segment to be an easier calculation than an MBR around a 2D point. Is the MBR/R-Tree solution
relly any faster than a GIS LINESTRING?

blog.jcole.us/2007/11/24/on-efficiently-geo-referencing-ips-with-maxmind-geoip-and-mysql-gis/

12/20

14.03.12

37.

38.

39.

40.

On efficiently geo-referencing IPs with MaxMind GeolP and MySQL GIS « Jeremy Cole

Andrew McL etchie Says:
Eebruary 11, 2008 at 16:06 | Reply

Nothing to add, just want to say how much | appreciate this thread!! | am analyzing large volumes of data on people *trying* to
access our site, but getting turned away b/c no access. We want to profile them geographically, and my big, fat Sun MySQL
server was dragging.

After | converted into polygonal data, | was able to process, using only a dual-core MacBook Pro, almost 6 million IP addresses to
identify country of origin in 5 minutes!!

Thanks y’all!

Dave K Says:
Eebruary 26, 2008 at 14:15 | Reply

This is a very helpful thread. We are using a database from IP2Location (www.ip2location.com). Some of the approaches
discussed in this thread assume that the IP ranges in the database are not overlapping. Has anyone confirmed that this is actually
the case (either for IP2Location or any other IP database)? Thanks.

Dave K Says:
February 28, 2008 at 11:07 | Reply

Well, I have tried some of the suggestions in this tread but the results were not what | expected. Here are my results:
QUERY 1
This was my initial query, which | am trying to optimize.

mysql> select SQL_NO_CACHE * from IP_TO_LOCATION where 1234567890 between IP_FROM and IP_TO LIMIT 1;
1row in set (1.62 sec)

QUERY 2

This is my first attempt at optimizing the query. However, this did not work so well... see the results below. Can anyone explain
why this is the case? Based on this thread, | would not have expected the ORDER BY clause to be a performance hit.

mysql> select SQL_NO_CACHE * from IP_TO_LOCATION where IP_TO >=1234567890 order by IP_TO asc LIMIT 1;
1row in set (3.84 seq)

QUERY 3

Removing the ORDER BY improved performance. Now the performance is slightly better then the initial query...but still not as fast
as | was expecting. Again, can anyone help explain what is happening here and why | a not seeing they type of performance
suggested by the comments on this thread?

mysql> select SQL_NO_CACHE * from IP_TO_LOCATION where IP_TO >=1234567890 LIMIT 1;
1row in set (1.52 sec)

Note: In the example queries above, the 1234567890 is a placeholder for the actual IP address used in these queries.

Kim Says:
March 11, 2008 at 02:511 Reply

Useful thread indeed. | got lots of valued information from it.
Similar to Andrew McLetchie, our company wanted to profile people visiting our website and | was the guy to make a solution for
it. After some research | found this blog and it gave me a few ideas.

| ended up using the free data from MaxMind (they update it monthly), but | used all their free products (country, city, region and
timezone) instead of just their Country or City data. When doing that there were of course duplicates, but other then that no major
problems.

| combined it all into a single database giving me access to not only look-up IPs but also to reverse look-up based on one or more
of the information stored.

Data is found usually within O.1sec.

Thus we can find users who are in a certain timezone, country, city or region. Pretty neat.

When MaxMind updates their data | only have to download the new csv files, load up my installation script and about 15-30mins

blog.jcole.us/2007/11/24/on-efficiently-geo-referencing-ips-with-maxmind-geoip-and-mysql-gis/

13/20

14.03.12

M.

42.

43.

44.

On efficiently geo-referencing IPs with MaxMind GeolP and MySQL GIS « Jeremy Cole

later (when run on my laptop) the database is updated.
I made it so easy to install, that its ready to be published for any to use (sorry, not my call). Written in PHP5 to MySQL5.

[‘j_ck_ Says:

March 17, 2008 at 10:57 | Reply

I've actually used this technique for a couple years now after realizing not only does it speed up the search but reduces the db
table to just over Imb which can be cached far better (and dropping the unneeded columns)

However | discovered it’s a little more accurate and gives better “missing” results if you do it backwards using the ENDING
column and descend — searching backwards essentially. MySQL does it just as fast, and if not found, the next lower result is
better.

I'd had to manually patch the maxmind ranges about two dozen times now. The free db has several holes and inaccuracies,
especially with ISPs like AOL. It also lists EU for several spots that should be more country specific. We should group together to
share the patches for holes.

Yannick says:
April 15, 2008 at 09:211 Reply

@ DaveK.

Query 2: You need an index(key) on field IP_TO

Tod Landis says:
April 23, 2008 at 14:08 | Reply

Thank you for the great thread. We have a GPLed tool you can use to make plots of GeolP data called Entrance. We were at the
MySQL Conference and | was wowed by the world map Jonathan Schwartz used to show MySQL and Solaris downloads in his
keynote. So | came home and added something similar to Entrance.

Its based on world map images by David Pape (which probably what the Sun guys used). Once you have lat, long calculated you
do this:

PLOT EarthChart

x, very small filled yellow circle
WITH

gray gridlines

SELECT lon, lat

from ACCESS_IPS;

The details are on my page: http://todlandis.com/ and the Entrance downloads are on http://dbentrance.com/ To get EarthCharts
you’ll need version 1.2.70 or greater, and either the GPL or IDE version.

To get a black background do this:
PLOT EarthChart

x, very small filled yellow circle
WITH

gray gridlines

no bitmap

background black

SELECT lon, lat

FROM ACCESS_IPS;

... then you can flip between them with Window | Go back... Window | Go forward.

The black background is pretty handy to have.

Michal Szewczyk says:
May 6, 2008 at 03:04 | Reply

Previou post was truncated, seemc to be the < problem...

SELECT SQL_NO_CACHE country_code FROM ip_country WHERE INET_ATON(“4.2.2.1")>=ip_from AND INET_ATON(“4.2.2.2")
<=ip_to;

with primary key on (ip_from, ip_to).

It gives the same result (queryTime = 0.0003 s) for me as Andy’s method and it wont’t give you incorrect results when ip not in
range.

blog.jcole.us/2007/11/24/on-efficiently-geo-referencing-ips-with-maxmind-geoip-and-mysql-gis/

14/20

14.03.12

45.

46.

47.

48.

49.

On efficiently geo-referencing IPs with MaxMind GeolP and MySQL GIS « Jeremy Cole
It’s also much faster than BETWEEN condition.

Paul Hirsch says:
August 18, 2008 at 12:24 | Reply

Curious to know if anyone has tried these out with myisampack’ed tables. while the country database isn’t too big, | wonder what
affect this has with the city database — quite a bit larger and the overlapping numbers again.

On another note (slightly off-topic): have any of you guys tried out the apache mod_geoip APl way of doing things? Just installed
it (pretty painless) and it works pretty darn quickly. Haven’t done any serious load testing with it, but with that APl its pretty easy
and PHP gives you variables through $_SERVER you can use (heck just about any language you use with Apache)... Food for
thought to save a little pain and database wear and tear. No 30 min. data build, etc, etc, etc. Once installed (took me about 5
minutes, maybe less) you just have to download once a month their compressed data file and (perhaps) restart apache. There may
be a better way to update it than that, and it surely can be automated. Food for thought....

http://www.maxmind.com/app/mod_geoip

Rolf says:
October 1, 2008 at 10:34 | Reply

It gives the same result (queryTime = 0.0003 s) for me as Andya€™s method and it wonta€™t give you incorrect results when ip
not in range.

Per query it may be faster but when doing an updte on a table with 977k rows, this took 25seconds. Using BETWEEN ran for over
12 hours before | stopped it, | let the primary key method run for several minutes. Spatial Indexing FTW

GeoTarget database setup Says:
October 16, 2008 at 03:38 | Reply

[...] format and querying is not very efficient at all, and there are two excellent posts (here and here) which | intend to one day
impliment myself, but for now the above method works fine for low to[...]

Perry M says:
December 8, 2008 at 19:08 | Reply

la€™ve tried to expand on Andya€™s method above with regards to having to check the ip_from at the software level.

| havena€™t exactly benchmarked this yet, but it seems as though it would not hurt performance. Basically | needed a reliable
way to do the test for ip_from <= result_row to determine if the IP was in the range that was returned. With PHP being loosely
typed and lack of support for unsigned intd€™s | tried to return a Boolean value from MySQL to check for instead of doing a mildly
more complex comparison at the software level.

[CODE]

SELECT country_code, ip_from, IF(INET_ATON(%s)>=ip_from,1,0) AS bool_inrange
FROM ip_country

WHERE ip_to >=INET_ATON(G€"%sa€™)

ORDER BY ip_to ASC

LIMIT 1;

[/CODE]

This allows me to simply check if ($result_array['bool_inrange']) { 4€! }
instead of having to worry about the signed/unsigned oddities; additionally, it ensures all LONG numbers are in correct
endianness by using MySQLA€™s INET_ATON.

In short, you still need to check at the software level against the &€ bool_inranged€™, but this should make it easier for some
languages and require less code to do those checks at the software/app level.

[This is a correction post due to the blog assuming a < and > combination in a post is an HTML element, heh.]

Chris Says:
August 10, 2009 at 06:27 | Reply

Hi,
I need to work out the country name for 3 million IPs stored in a table called ips. | have already converted these to their integer

forms. When | try to run the following query:

SELECT * FROM IP2Country, ips
WHERE ip >=ip_start AND ip <=ip_end
ORDER BY ip_start ASC

blog.jcole.us/2007/11/24/on-efficiently-geo-referencing-ips-with-maxmind-geoip-and-mysql-gis/

15/20

14.03.12

50.

51

52.

53.

54.

55.

On efficiently geo-referencing IPs with MaxMind GeolP and MySQL GIS « Jeremy Cole

LIMIT 1

It just says it is executing for ages and never finishes. Does anyone have any idea how | am going to manage this? 3million is just

the tip of the iceberg as | have 182 million to convert in total.

Cheers

GameGape.com Says:
August 18, 2009 at 09:53 | Reply

Thanks for the amazing MySQL tune article.

Here is my benchmark:

#1: Traditional way:

SELECT a.ip, b.code FROM tbl_online AS a

INNER JOIN tbI_ip AS b

ON INET_ATON(a.ip) BETWEEN b.ipfrom AND b.ipto
GROUP BY a.ip ORDER BY a.time DESC

—>14.6 seconds

#2 : Using polygon:

SELECT a.ip, b.code FROM tbl_online AS a

INNER JOIN tbI_ip AS b

ON MBRCONTAINS(polygon, POINTFROMWKB(POINT(INET_ATON(a.ip), 0))
GROUP BY a.ip ORDER BY a.time DESC

—>0.0028 second

Someone said: “when you upgrade the hardware, the speed will be multiply by 10, but when you OPTIMIZE your code, the speed

will be multiply by 1,000”
That’s exactly TRUE.

Thanks again for the tip !!!

Cezar VANT Says:
December 5, 2009 at 00:22 | Reply

Thanks a lot Jeremy for this thread. I'm using MaxMind GeolP stucture to find visitors location in my project and your spatial

method is amazing.

Cezar

Sam Says:
December 28, 2009 at 17:05 | Reply

How about this:

SELECT if(ip_from = INET_ATON(‘%s’)
ORDER BY ip_to ASC

LIMIT1

select and check in one query...

Sam Says:
December 28, 2009 at 17:09 | Reply

How about this:

SELECT if(ip_from = INET_ATON(‘%s’)
ORDER BY ip_to ASC

LIMIT1

Sam Says:
December 28, 2009 at 17:10 | Reply

SELECT if(ip_from = INET_ATON(‘%s)
ORDER BY ip_to ASC
LIMIT 1

llja Says:
April 14, 2010 at 02:04 | Reply

blog.jcole.us/2007/11/24/on-efficiently-geo-referencing-ips-with-maxmind-geoip-and-mysql-gis/

16/20

14.03.12 On efficiently geo-referencing IPs with MaxMind GeolP and MySQL GIS « Jeremy Cole
This is the way i query the ip-table:

SET @qip =INET_ATON(*213.128.135.37");
SELECT @qip as ip, a.*, g.* FROM (

(SELECT it.start, il.end, il.loc

FROM geo_ipi1

WHERE il.start >= @qjip

ORDER BY il.start ASC LIMIT 1)

UNION ALL

(SELECT i2.start, i2.end, i2.loc

FROM geo_ipi2

WHERE i2.start = a.start AND @qip <= a.end;

56. llja Says:
April 14, 2010 at 02:06 | Reply

[CODE]

SET @qip = INET_ATON(*213.128.135.37");
SELECT @qip as ip, a.*, g.* FROM (

(SELECT il.start, i1.end, il.loc

FROM geo_ipit

WHERE il.start >=@qip

ORDER BY il.start ASC LIMIT 1)

UNION ALL

(SELECT i2.start, i2.end, i2.loc

FROM geo_ipi2

WHERE i2.start = a.start AND @qjip <= a.end;

[/CODE]

57. llja Says:
April 14, 2010 at 02:07 | Reply

please ignore my posts, since they are not displayed correctly

58. Jjoao Says:
September 21, 2010 at 13:311 Reply

Try the following and you will be amazed as | was.
Add a primary index to (ip_to, country), assuming your table has 3 fields (ip_from, ip_to, country), and execute the following query:
SELECT country FROM ip2country WHERE 123456789 BETWEEN ‘ip_from” AND “ip_to" LIMIT 1;

Note that the index has to be on ip_to and not on ip_from... and by adding country to the same index mysql will use the “Using
index” optimization.

The other trick is to add the LIMIT 1together with BETWEEN!

59. joao Says:
September 21, 2010 at 13:36 | Reply

My bad, in order to use the “Using index” optimization the index has to be on all 3 fields (ip_to, ip_from, country)... or just (ip_to) if
you don’t care about the optimization or are using MEMORY tables which don’t use that optimization anyway. Btw, in case you
are using MEMORY tables make sure the index is of type “BTREE” and not “HASH” as that’s the default for memory tables.

60. JOQO Says:
September 22, 2010 at 06:00 | Reply

| just posted a more detailed explanation on my blog.

61. kidbrando Says:
January 26, 2011 at 18:24 | Reply

| have to say that this blog has helped me a lot. The solution posted wasnt the exact solution | needed, but guided me in the right
direction!

blog.jcole.us/2007/11/24/on-efficiently-geo-referencing-ips-with-maxmind-geoip-and-mysql-gis/ 17/20

14.03.12

62.

On efficiently geo-referencing IPs with MaxMind GeolP and MySQL GIS « Jeremy Cole
HERE IS MY EXAMPLE FOR SOMEONE WHO HAS A TABLE OF IPs and wants to join against GeolP data for the location id from

Geol.iteCity-Blocks.csv.
Step 1: Create Table For Loading The Raw File
drop table ip_country;

CREATE TABLE ip_country

(

id INT UNSIGNED NOT NULL auto_increment,
ip_poly POLYGON NOT NULL,

ip_from INT UNSIGNED NOT NULL,

ip_to INT UNSIGNED NOT NULL,

locld bigint NOT NULL,

PRIMARY KEY (id),

SPATIAL INDEX (ip_poly)

);

Note | am loading from a remote location Hence No LOAD DATA LOCAL**

LOAD DATA INFILE ‘/GeolLiteCity-Blocks.csv’
INTO TABLE ip_country

FIELDS

TERMINATED BY *;

ENCLOSED BY

LINES

TERMINATED BY “n”

IGNORE 2 LINES

(

@ip_from, @ip_to,

@locld

)

SET

id ;= NULL,

ip_from := @ip_from,

ip_to := @ip_to,

ip_poly := GEOMFROMWKB(POLYGON(LINESTRING(
/* clockwise, 4 points and back to 0 */
POINT(@ip_from, -1), /* O, top left */
POINT(@ip_to, -1), /*1, top right */
POINT(@ip_to, 1), /* 2, bottom right */
POINT(@ip_from, 1), /* 3, bottom left */
POINT(@ip_from, -1) /* O, back to start */
),

locld := @locld

)

Step 2: Query your Table using ipcountry
Table Example:

drop table if exists geo_test;

create table geo_test (ipvalue varchar(255),locld bigint);
insert geo_test select '4.22.141.200",NULL ;

insert geo_test select '4.42.246.68’,NULL ;

insert geo_test select '4.59.148.141" ,NULL ;

create index idx_inet on geo_test(ipvalue);

update geo_test a, ip_country b
set a.locID = b.loclD
WHERE MBRCONTAINS(ip_poly, POINTFROMWKB(POINT(INET_ATON(ipvalue), O)));

/**BENCHMARKING ***/

Updating a table of 1K records takes .110 ms..
Updating a table of 100K records takes 3.37 ms..

How to build an efficient GeolP SQL table | dopefish.de says:
August 22, 2011 at 12:20 | Reply

[...] while back | found a very interresting posting at http://www.jcole.us that described how to use Spacial Indexes together with

MySQL’s GIS to speed up the [...]

blog.jcole.us/2007/11/24/on-efficiently-geo-referencing-ips-with-maxmind-geoip-and-mysql-gis/

18/20

14.03.12

63.

64.

65.

66.

On efficiently geo-referencing IPs with MaxMind GeolP and MySQL GIS « Jeremy Cole

Jonathan Says:
October 22, 2011 at 01:39 | Reply

anyone else looking at the GeoLiteCity data from MaxMind — also now free but a different format?

Vovan Says:
November 23, 2011 at 07:47 | Reply

Hello, Jeremy.

I’'m trying to JOIN table with logged ips and geoip table with country codes. | created polygons for ip_country (same, like in your’s
tutorial) and points for logged ips:

CREATE TABLE "ips” (

“id" int(10) unsigned NOT NULL AUTO_INCREMENT,

“ip int(10) unsigned NOT NULL,

“ip_point” point NOT NULL,

PRIMARY KEY (id)

)

If | do:

SELECT *

FROM ips

LEFT JOIN ip_country ON MBRCONTAINS(ip_country.ip_poly, ips.ip_point)
WHERE ips.id = 2;

Everything works good — index ip_poly in tbl ip_country is used and everything is fast. But when | want to join several rows from
logged_ips everything breaks down — index is not used:

SELECT*

FROM ips

LEFT JOIN ip_country ON MBRCONTAINS(ip_country.ip_poly, ips.ip_point)
WHERE ips.ip IN (1,2,3,4,5);

| tried to solve this problem for many days, but still have no idea, why it is not working properly. Please, give me any clue how to
fix it.

E Christian Fazzini Says:

November 25, 2011 at 22:35 | Reply

Great article!
I am trying the following query against my table and its returning no results:

SELECT country_name

FROM ip_to_countries

WHERE ip_address_to >= INET_ATON('4.2.2.1")
ORDER BY ip_address_to ASC LIMIT 1

Nikolay Bachiyski mentioned that the GeoLite Country database actually contains lots of gaps.

| am using the GeolLite Country csv version rather than the $50 paid. Does this problem go away automatically if | use the paid
version ($50)?

Or would | still need to find a way to fill in the “gaps”? If so, | am on Ruby On Rails, is there a way to do this with Ruby?

MySQL Performance Tips | i++ Says:
December 19, 2011 at 20:48 | Reply

[...] Abuse the system for optimiization you're using with system dependant features like RTREE’s for optimized range queries [...]

hat do you thin

blog.jcole.us/2007/11/24/on-efficiently-geo-referencing-ips-with-maxmind-geoip-and-mysql-gis/

19/20

14.03.12 On efficiently geo-referencing IPs with MaxMind GeolP and MySQL GIS « Jeremy Cole

Enter your comment here...

Fill in your details below or click an icon to log in:

E Email (requirec (Address never ma ublic)

Name (req

Website

Notify me of follow-up comments via email. Post Comment

Notify me of new posts via email.

Theme: Kubrick. Blog at WordPress.com. Fonts on this blog.
Entries (RSS) and Comments (RSS).

blog.jcole.us/2007/11/24/on-efficiently-geo-referencing-ips-with-maxmind-geoip-and-mysql-gis/ 20/20

